Use of a Multiplex PCR Pneumonia Panel for the Microbial Analysis of Lower Respiratory Tract Specimens from Children

J.M. Campos, C. Guray
Children’s National Medical Center, Washington, DC, United States

BACKGROUND

Prompt identification of pathogens is essential for optimal management of pneumonia patients. Culture requires 48-72h or longer to obtain results, during which patients receive empiric antimicrobial therapy and remain hospitalized. The Curetis Unyvero LRT Panel enables rapid and simultaneous detection of 19 bacterial pathogens and 10 antimicrobial resistance genes within 5h of specimen collection. Our prospective study aimed to evaluate the performance of the Unyvero LRT assay compared to culture of endotracheal aspirates (ETA) and bronchoalveolar lavage (BAL) specimens collected from children.

METHODS

Residual ETA (127) and BAL (62) specimens obtained for culture were included (n=189). Patients >18yo were excluded unless they were tested for continuity of care. Cultures were performed per routine practice. Aliquots were frozen within 24h of collection and thawed immediately before testing on the Unyvero system. Unyvero results were compared to initial culture results in 104 specimens, and in 85 specimens that had a follow-up culture inoculated simultaneous to Unyvero testing.

RESULTS

133 specimens were positive for one or more pathogens on the Unyvero LRT panel. The positivity rate was higher for ETAs than BALs by both methods (Fig. 2) and our data indicated that Unyvero was more sensitive than culture for several key pathogens (Fig. 3&4). Culture missed one Pseudomonas and two Haemophilus in BALs. Additionally, Unyvero detected several pathogens in ETAs (Acinetobacter, Pseudomonas, Haemophilus, and Serratia) that were undetected by culture. Unyvero had no false negatives in BALs, and only two S. aureus falsely negative results were observed in ETAs. Culture missed one S. pneumoniae that was detected by Unyvero. Variability in semi-quantitative scores was observed between the initial and follow-up cultures. The overall sensitivity and specificity for Unyvero results were 88% and 95% compared to the initial cultures, and 98% and 98% compared to the follow-up cultures, respectively (Fig. 5).

CONCLUSION

Our findings indicate that the Unyvero LRT improves the detection of important and difficult to treat pathogens such as Pseudomonas and Acinetobacter. Culture reports of normal respiratory flora can be confusing to clinicians while Unyvero results are unbiased and straightforward. Such results enable clinicians to manage patients based on the specimen Gram stain and LRT results along with their clinical judgement. Five hour pathogen identification and antibiotic resistance detection enable early interventions and avoidance of ineffective antimicrobial therapy.

ACKNOWLEDGMENTS

We kindly thank Curetis for providing the Unyvero reagents for this study.